If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5m^2-30m-30=0
a = 5; b = -30; c = -30;
Δ = b2-4ac
Δ = -302-4·5·(-30)
Δ = 1500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1500}=\sqrt{100*15}=\sqrt{100}*\sqrt{15}=10\sqrt{15}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-10\sqrt{15}}{2*5}=\frac{30-10\sqrt{15}}{10} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+10\sqrt{15}}{2*5}=\frac{30+10\sqrt{15}}{10} $
| 7x−14=7(5x−6) | | 2^3x-1=4^2x-6 | | 2x/(2x+1)=1 | | 7^3x-1=98 | | 4(x−10)=−6(2−x)−6x | | -2(6x+1)+2x=-14-16x | | 6^x+6=7^x | | y=2-(-6) | | 30x+(10/3)x=3300 | | 2^x-3=8^x+^1 | | x^2-26x+79=0 | | 16x^2+34x+2=0 | | 6(x+4)^2=18 | | 126+(x+77)=180 | | 3(x+3)+2(2x-4)=12(2x-1) | | -34=5(u-5)-2u | | 7h=4h-15 | | 3x-2.3=2x+1.2 | | 1.43x+21.12=2x+16.5 | | P^2+6p-2=5 | | 4x-24=7x+28 | | (3.14)*(2)*x=12 | | 7h-12=4h-15 | | 98=7+(n-1)7 | | X²-3x-28=9 | | 5v+15=91 | | 0=10x-4 | | 4,500-b=3b+4,098 | | 59=4u-17 | | 3x-2(3x+23)-223+32=34(x-4)+349 | | 15(2x+7)=22 | | 6=7-(2x+3) |